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LETTER TO THE EDITOR 

Exact calculations of Coulomb bridge graphs in one dimension 

C Deutsch,?$ Y Furutanii and M M GombertS 
t Department of Electronics, Okayama University, 1-3 Tsushimanaka, 700 Okayama, 
Japan 
$ Laboratoire de Physique des Plasmas, Universite Paris XI, 91405-0rsay, France 

Received 10 July 1979 

Abstract. Bridge nodal diagrams built upon the screened Debye interaction are considered 
in 2 +e dimensions for the classical one-component plasma (OCP) model. Their asymptotic 
behaviour is shown to be nearly e -independent. They are evaluated analytically in one 
dimension. The corresponding asymptotic decay - exp(-Kkr), with Kk a positive integer 
3 2, is thus extrapolated to any e. 

One of the main problems left unsatisfactorily solved (Deutsch 1978) in the nodal 
expansion with respect to the plasma parameter of the classical one-component plasma 
(OCP) model is the asymptotic behaviour of non-convolution and 1,2-irreducible (with 
respect to the root points 1 and 2) diagrams-the so-called bridge built on the 
first-order and screened Debye interaction. The asymptotic decay of these graphs is of 
paramount importance (Deutsch et a1 1976) for implementing the numerical hypernet- 
ted chain (HNC) scheme (Springer et a1 1973) for the canonical equilibrium pair 
distribution, and for nearly any value of the plasma parameter h. = e2/kBTA 'D. A D  
denotes the Debye length (kBT/S,p e2)l'*, with S, = 2 ~ " ' ~ / r ( v / 2 )  and p = N / V ,  and 
v = 2 + E  is the real space dimension. Thanks to the h. expansion, this HNC scheme is 
the only one which permits us to reconnect the small-h. regime to the strongly coupled 
one (& 2 1) where numerical simulations can be used. 

The resummations up to infinity of the convolution chains, built from n -bubbles 
with single Debye lines intertwined between them, constitute the basic ingredient of the 
HNC scheme, provided the non-convolution diagrams vanish faster than the Coulomb 
tail r -' when r + 00. It has been demonstrated in three dimensions (Deutsch er a1 1976) 
that the given bridge behaves as p e-"'/r with (Y > 1, when r > A D .  These results have 
been subsequently confirmed by a systematic topological approach (Lavaud 1977, 
1978) for the Y = 3 bridge graphs having a number of Debye lines 1 not greater than 3k, 
where k is the number of nodal points. Whenever the Y = 3 bridge graphs may be given 
finite upper bounds, their asymptotic decay is expected to be essentially governed by an 
exp(-Kkr) term, with K k  the connection number, i.e. the maximum number of 
self-avoiding (without common lines) paths connecting the root points. 

The purpose of this Letter is to present a novel method which allows the extraction 
of the asymptotic decay of any bridge diagram, with single- or multiple bonded, and 
with any values k and 1, by means of well-behaved and finite analytic manipulations. 
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This new approach makes use of the E independence of the essential part of the 
asymptotic behaviour. This crucial remark permits us to circumvent the difficulty of 
evaluating the numerous U = 3 angular averages, by projecting out the nodal diagrams 
on their E = -1 values. These methods are based on the E-unified Mayer-Salpeter 
expansion (Deutsch 1976). 

Thus, we take the Coulomb interaction as 

with its Fourier transform S,k -’. The corresponding first-order Debye line reads 
(x = rlh D) 

- -& e-x”l+‘’/2, 
x +m 

with L/Z(X) a modified Bessel function of the second kind. 
According to the above conjecture, we expect the asymptotic decay of any nodal 

graphs built on the screened interaction (2) to be monitored by exp(-&r) for E a -1, 
the E dependence being relegated within a marginal overall factor. Such a statement is 
in agreement with limx+m C,(x). This first-order behaviour transmits itself to all the 
chain diagrams built from n -bubbles [Cy ( r ) ] ” / n  ! and Debye lines C,, ( r ) ,  through the 
asymptotic decay 

(3) 

where G2(K) is the Fourier transform of the two-bubble ladder. Turning now to the 
bridge class, the E independence of the exponential decay may be easily checked out on 
the simplest diagram, (30) (see figure l), which satisfies (Cauchy-Schwartz) 

- ( 2 / . r r ~  )f’2h, (1 + h,G~(o))”~K/2[(1 + &Gz(O)X 2)1/21, 

l(30)16A(f)(x) e-”, withA‘”(x) =constant andA‘”(x) = (lnx)/x2. (4) 

L 

Figure 1. Simplest and third-order bridge graph denoted by (30). 

Figure 2. Horizontal ‘ladder’ bridge graph. 
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Analogous behaviour may be shown by the horizontal ladder (figure 2)., the upper 
bound of which is the convolution product at order n of n - 1 two-bubbles decaying as 

e-2Xlx 1+e'2, E C 1 .  

These partial results lend further support to the previous conjecture. The marginale 
dependence left in these upper bounds suggest that, at least for 1 <3k, the single- 
bonded bridges are smaller (in absolute value) than the Y = 1 ones. This second and 
appealing conjecture may be shown to survive the short-ranged resummation (E > 0) 

exp(G(r))- 1 -Cy(r) (6)  

needed for multiple-bonded graphs. A detailed study of equation (6) in k-space 
(Cohen and Murphy 1969, Furutani and Deutsch 1977, 1979) shows that the bridges 
(E > 0) built on the line (6) are bounded above (in absolute value) by their non-resumed 
E = -1 counterparts. 

All these considerations render very attractive the computation of one-dimensional 
bridge diagrams. We thus first consider the bridge (30) (figure 1). Bearing in mind that 
A-, = p  e2AD and 2 p A - d ~  = 1, its contribution to the potential of average force 
WZ(X) = keT In g d x )  reads 

Wi30' (x) =p2(-A1)' I-m d ~ 3  

m m 

d ~ 4  exp - (r13 +r32 +r14 +r42 +r3& 6' 

=&.A?l(1-6x -~e-x)e-2x  (Ki = kiA D). (7) 
The result (7) produces, as expected, an upper bound to the previous Y = 3 results 
(equations (4) and ( 5 ) )  when Y 1, with the same E -  independent 'integer' exponential 
decay exp( -Kkr). Similarly, all the bridge graphs which are topologically equivalent to 
(30), with the transverse Debye line 3-4 replaced by thep -bubble (-A-l)" e-'"/p !, can 
be handled as above. The graphs depicted in figure 3 thus provide the following 
contribution to the potential of average force, 

yielding back the result (7) forp = 1. This calculation demonstrates unambiguously that 
Kk monitors the asymptotic decay irrespective of the multiple-bondedness. The only 
significant effect of the 'transverse' p-bubble is to decrease the absolute value of the 
graph, which tends to zero when p + CO. 

Any other asymmetric topology can be computed at the cost of more tedious 
manipulations. For instance, the graph depicted in figure 4, with a lateral p -bubble, is 

Fignre 3. Simplest bridge graph ( p ,  0) at order n = p  +2. 
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-4. Asymmetric bridge graph ( p ,  1) at order n = p  +2. 

3 L 

Figure 5. Simplest fourth-order bridge graph with three nodal points. 

obtained through the Fourier transform 

K4+(pz+33)K2+24(p2-1) 
( K 2  + 4) (K2 + 9) 

(9) 

with A = [K + ( p  + l)’][K + (p - l)’]. Again we recover equation (7) for p = 1. The 
occurrence of double poles in equation (9) leads to different results according to 
whether p = 2, 3 or 4. So we obtain the separate expressions 

K4+(3p2+18p+13)K2-2(p2-1)(p +2)(p +3) + 
P(P + ~ ) ( K ~ + ~ ) [ K ~ + ( P  +2Y1 

61 
WyJ) (x ) - 

240 

There are no longer double poles in equation (9) forp 2 5,  so we obtain the general 
quantity 

2p3+8p2+5+3 pe-” ( p + 8 ) e  --(p-l)x 

p(p-l)(p+3) p - 2  ( ~ - 2 ) ( ~ + 3 )  P 
--- 

(13) 

( X )  = wp” 

P 3% 

which behaves in a similar way to the previous (p, 0). As a last example, let us consider 
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the simplest n = 4 bridge graph with three nodal points (figure 5) .  Its contribution to 
W Z ( X )  reads 

These one-dimensional computations make clear that the universal exponential 
decay -exp( -&r) can be obtained for any bridge diagram through exact analytical 
manipulations. Moreover, the previous lines of reasoning demonstrate that these 
results may be transferred to any OCP of higher dimensionality (E > -1). 
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